Atomic Structure Question 245

Question: An electron, $ e_1 $ is moving in the fifth stationary state, and another electro $ e_2 $ is moving in the fourth stationary state. The radius of orbit of electron $ e_1 $ is five times the radius of orbit of electron, $ e_2 $ calculate the ratio of velocity of electron $ e_1(v_1) $ to the velocity of electron $ e_2(v_2) $

Options:

A) 5 : 1

B) 4 : 1

C) 1 : 5

D) 1 : 4

Show Answer

Answer:

Correct Answer: D

Solution:

  • From the expression of Bohr’s theory, we know that $ m_{e}v_1r_1=n_1\frac{h}{2\pi } $

$ \And ,m_{e}v_2r_2=n_2\frac{h}{2\pi } $

$ \frac{m_{e}v_1r_1}{m_{e}v_2r_2}=\frac{n_1}{n_2}\frac{h}{2\pi }\times \frac{2\pi }{h} $ Given, $ r_1=5r_2,,n_1=5,n_2=4 $

$ \frac{m_{e}\times v_1\times 5r_2}{m_{e}\times v_2\times r_2}=\frac{5}{4} $
$ \Rightarrow \frac{v_1}{v_2}=\frac{5}{4\times 5}=\frac{1}{4}=1 : 4 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें