Atomic Structure Question 374

Question: For a hypothetical hydrogen like atom, the potential energy of the system is given by $ U(r)=\frac{-ke^{2}}{r^{4}} $ where r is the distance between the two particles. If Bohr’s model of quantization of angular momentum is applicable, then velocity of particle is given by

Options:

A) $ \frac{nh}{16,ke{{\pi }^{2}},{m^{3/2}}} $

B) $ \frac{n^{2}h^{2}}{18,k^{2}e^{2}{{\pi }^{2}},m^{3}} $

C) $ \frac{n^{3}h^{3}}{18,k^{2}e^{2}{{\pi }^{3}},m^{4}} $

D) $ \frac{n^{2}h^{2}}{4\sqrt{2},ke{{\pi }^{2}}{m^{3/2}}} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • $ \frac{d[U(r)]}{dr}=\frac{4ke^{2}}{r^{5}}=force $ $ \frac{4ke^{2}}{r^{5}}=\frac{mv^{2}}{r} $ and $ mvr=\frac{nh}{2\pi } $ or $ r=\frac{nh}{2\pi mv}\Rightarrow \frac{1}{r}=\frac{2\pi mv}{nh} $ $ 4ke^{2}\times \frac{1}{r^{5}}=\frac{mv^{2}}{r} $ $ 2ke^{2}\times \frac{1}{r^{4}}=mv^{2} $ $ 2ke^{2}\times \frac{16{{\pi }^{4}}m^{4}v^{4}}{n^{4}h^{4}}=mv^{2} $ $ v^{2}=n^{4}h^{4}/32ke^{2}{{\pi }^{4}}m^{3} $ $ v=\frac{n^{2}h^{2}}{4\sqrt{2}ke{{\pi }^{2}}{m^{3/2}}} $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें