Equilibrium Question 716

Question: Gaseous $ N_2O_4 $ dissociates into gaseous $ NO_2 $ according to the reaction $ [N_2O_4(g)\rightarrow 2NO_2(g)] $ At 300 K and 1 atm pressure, the degree of dissociation of $ N_2O_4 $ is 0.2. If one mole of $ N_2O_4 $ gas is contained in a vessel, then the density of the equilibrium mixture is:

Options:

A) 1.56 g/L

B) 6.22 g/L

C) 3.11g/L

D) 4.56 g/L

Show Answer

Answer:

Correct Answer: C

Solution:

$\begin{aligned} & \begin{matrix} {} & {} & N_2O_4(g)\rightarrow 2NO_2(g) \\ \end{matrix} \\ & \begin{matrix} t=0 & {} & 1 \\ \end{matrix}\begin{matrix} {} & {} & {} & 0 \\ \end{matrix} \\ & \begin{matrix} t=eq\text{.} & 1-\alpha & {} \\ \end{matrix}\begin{matrix} {} & 2\alpha \\ \end{matrix} \\ \end{aligned} $ Where $ \alpha $ = Degree of dissociation. Mol. wt. of mixture $ =\frac{(1-\alpha )\times {M_{N_2O_4}}+2\alpha \times {M_{NO_2}}}{(1+\alpha )} $

$ =\frac{(1-0.2)92+2\times 0.2\times 46}{(1+0.2)}=76.66 $ Now, As per ideal gas equation $ PV=nRT $

$ PM_{mixture}=dRT $

$ \therefore d=\frac{PM_{mix}}{RT}=\frac{1\times 76.66}{0.0821\times 300}=3.11g/L $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें