Equilibrium Question 717

Question: The value of $ K_{p} $ for the equilibrium reaction $ N_2O_4(g)\rightarrow 2NO_2(g) $ is 2. The percentage dissociation of $ N_2O_4(g) $ at a pressure of 0.5 atm is

Options:

A) 25

B) 88

C) 50

D) 71

Show Answer

Answer:

Correct Answer: D

Solution:

$ \begin{aligned} & \begin{matrix} {} & {} & {} & N_2O_4(g)\rightarrow 2NO_2(g) \\ \end{matrix} \\ & \begin{matrix} Initialmoles & {} & 1 & {} \\ \end{matrix}\begin{matrix} {} & 0 \\ \end{matrix} \\ & \begin{matrix} Molesatequil\text{.} & (1-\alpha ) & 2\alpha & {} \\ \end{matrix} \\ & \begin{matrix} {} & {} & {} & (\alpha =degreeof,dissociation) \\ \end{matrix} \\ \end{aligned} $ Total number of moles at equil. $ =( 1-\alpha )+2a $

$ =( 1+\alpha ) $

$ {P_{N_2O_4}}=\frac{( 1-\alpha )}{( 1+\alpha )}\times P $

$ {P_{NO_2}}=\frac{2\alpha }{( 1+\alpha )}\times P $

$ K_{p}=\frac{{{({P_{NO_2}})}^{2}}}{{P_{N_2O_4}}}=\frac{{{( \frac{2\alpha }{(1+\alpha )}\times P )}^{2}}}{( \frac{1-\alpha }{1+\alpha } )\times P}=\frac{4{{\alpha }^{2}}P}{1-{{\alpha }^{2}}} $ Given, $ K_{p}=2,P=0.5 $ atm
$ \therefore K_{p}=\frac{4{{\alpha }^{2}}P}{1-{{\alpha }^{2}}} $

$ =\frac{4{{\alpha }^{2}}\times 0.5}{1-{{\alpha }^{2}}} $

$ \alpha =0.707\approx 0.71 $

$ \therefore $ Percentage dissociation $ =0.71\times 100=71 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें