Nuclear Chemistry Question 13

Question: Consider an a-particle just in contact with a $ _{92}U^{238} $ nucleus. Calculate the coulombic repulsion energy (i.e. the height of the coulombic barrier between $ U _{238} $ and alpha particle) assuming that the distance between them is equal to the sum of their radii

[UPSEAT 2001]

Options:

A) 23.8517× $ 10^{4}eV $

B) $ 26.147738\times 1{{0}^{4}}eV $

C) $ 25\text{.3522}\times 10^{4}eV $

D) $ 20.2254\times 10^{4}eV $

Show Answer

Answer:

Correct Answer: B

Solution:

$ {r _{nucleus}}=1\text{.3}\times 1{{0}^{\text{-13}}}\times {{(A)}^{1/3}}, $ where A is mass number $ {r _{U^{238}}}=1.3\times {{10}^{-13}}\times {{(238)}^{1/3}}=8.06\times {{10}^{-13}}cm. $

$ {r _{He^{4}}}=1.3\times {{10}^{-13}}\times {{(4)}^{1/3}}=2.06\times {{10}^{-13}}cm. $ \Total distance in between uranium and $ \alpha $ nuclei = 8. 06× $ {{10}^{-13}} $ + 2.06 × $ {{10}^{-13}} $ = 10.12 × $ {{10}^{-13}} $ cm Now repulsion energy = $ \frac{Q_1Q_2}{r}=\frac{92\times 4.8\times {{10}^{-10}}\times 2\times 4.8\times {{10}^{-10}}}{10.12\times {{10}^{-13}}}erg $

$ =418.9\times {{10}^{-7}}erg $ = $ 418.9\times {{10}^{-7}}\times 6.242\times 10^{11}eV $ = $ 26.147738\times 10^{4}eV. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें