Redox Reactions And Electrochemistry Question 648

Question: Equivalent conductivity of $ BaCl_2,H_2SO_4 $ and HCl are $ y_1,y_2 $ and $ y_3S,c{m^{-1}}e{q^{-1}} $ at infinite dilution. If conductivity of saturated $ BaSO_4 $ solution is $ y,S,c{m^{-1}}, $ then find $ K_{sp} $ of $ BaSO_4 $ .

Options:

A) $ \frac{y^{2}}{{{(y_1+y_2-y_3)}^{2}}} $

B) $ \frac{2.5{y^{-2}}}{{{(y_1+y_2-y_3)}^{2}}} $

C) $ \frac{500}{y_1+y_2-y_3} $

D) $ \frac{2.5\times 10^{5}y^{2}}{{{(y_1+y_2-y_3)}^{2}}} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] $ \Delta _m^{\infty }BaSO_4=2\Delta _eq^{\infty }(BaSO_4) $

$ \Delta _eq^{\infty }(BaSO_4)=\Delta _eq^{\infty }(B{a^{2+}})+\Delta _eq^{\infty }(SO_4^{-2}) $

$ =\Delta _eq^{\infty }(BaCl_2)+\Delta _eq^{\infty }(H_2SO_4)-\Delta _eq^{\infty }(HCl) $

$ \Delta _eq^{\infty }(BaSO_4)y_1+y_2-y_3 $

$ \Delta _m^{\infty }=2(y_1+y_2-y_3) $

For sparingly soluble salt, $ \Delta _m^{\infty }=\frac{k}{m}\times 100 $

or $ M=\frac{y}{2(y_1+y_2-y_3)}\times 1000 $

$ =\frac{500}{y_1+y_2-y_3} $

$ K_{sp}=M^{2}=\frac{2.5\times 10^{5}y^{2}}{{{(y_1+y_2-y_3)}^{2}}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें