Redox Reactions And Electrochemistry Question 654

Question: EMF of which of the following cells at 298 K is highest-

Given, $ E_{( M{g^{2+}}/mg )}^{0}=-2.37V; $ $ E_{( Cu^{2}/Cu )}^{0}=+2.34V; $ $ E_{( F{e^{2+}}/Fe )}^{0}=-0.44V; $ $ E_{( S{n^{2+}}/Sn )}^{0}=-0.14V; $ $ E_{( \frac{1}{2}Br_2/B{r^{-}} )}^{0}=+1.08V; $

Options:

A) $ Mg(s)|M{g^{2+}}(0.001M)| $ $ |C{u^{2+}}(0.0001M)|Cu(s) $

B) $ Fe(s)|F{e^{2+}}(0.001M)| $ $ |{H^{+}}(1M)|H_2(g)(1bar)|Pt(s) $

C) $ Sn(s)S{n^{2+}}(0.050M)| $ $ |{H^{+}}(0.020M)|H_2(g)(1bar)|Pt(s) $

D) $ Pt(s)|Br_2(l)|B{r^{+}}(0.010M)| $ $ |{H^{+}}(0.030M)|H_2(g)(1bar)|Pt(s) $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] (i) Cell equation : $ Mg(s)+C{u^{2+}}(aq)\to M{g^{2+}}(aq)+Cu(s)(n=2) $

Nernst equation: $ E_{cell}=E_{cell}^{0}-\frac{0.0591}{2}\log \frac{[ M{g^{2+}} ]}{[ C{u^{2+}} ]} $

EMF of the cell, $ E_{cell}=[ 0.34-(-2.37) ]-\frac{0.0591}{2}\log \frac{[ {10^{-3}} ]}{[ {10^{-4}} ]} $ $ =2.71-0.02955=2.68V $

(ii) Cell equation: $ Fe(s)+2{H^{+}}(aq)\to F{e^{2+}}(aq)+H_2(g)(n=2) $

Nernst equation: $ E_{cell}=E_{cell}^{0}-\frac{0.0591}{2}\log \frac{[ F{e^{2+}} ]}{{{[ {H^{+}} ]}^{2}}} $

EMF of the cell, $ E_{cell}=[ 0-(0.44) ]-\frac{0.0591}{2}\log \frac{[ {10^{-3}} ]}{{{[1]}^{2}}} $ $ =0.44-\frac{0.591}{2}\times (-3) $ $ =0.44+0.0887 $ $ =0.5287V=0.53V $ $ EMF=0.53V $

(iii) Cell equation: $ Sn(s)+2{H^{+}}(aq)\to S{n^{2+}}(aq)+H_2(g) $ Nernst equation:

$ E_{cell}=E_{cell}^{0}-\frac{0.0591}{2}\log \frac{[ S{n^{2+}} ]}{{{[ {H^{+}} ]}^{2}}} $

EMF of the cell,

$ E_{cell}=[0-(-0.14)]-\frac{0.0591}{2}\log \frac{[0.05]}{{{[0.02]}^{2}}} $ $ =0.14-\frac{0.0591}{2}\times (2.097) $ $ =0.14-0.0620=0.08V $ EMF = 0.08V

(iv) Cell equation: $ 2B_r^{-}(l)+2{H^{+}}(aq)\to Br_2(l)+H_2(g)(n=2) $

Nernst equation: $ E_{Cell}=E_{cell}^{0}=\frac{0.0591}{2}\log \frac{1}{{{[ B{r^{-}} ]}^{2}}{{[ {H^{+}} ]}^{2}}} $

EMF of the cell, $ E_{cell}=[ 0-1.08 ]-\frac{0.0591}{2}\log \frac{1}{{{(0.01)}^{2}}\times {{(0.03)}^{2}}} $ $ =-1.08-\frac{0.0591}{2}\log \frac{1}{{{(0.01)}^{2}}\times {{(0.03)}^{2}}} $

$ =-1.08-\frac{0.0591}{2}\log ( 1.11\times 10^{7} ) $

$ =-1.08-\frac{0.0591}{2}(7.0457) $

$ =-1.08-0.208=-1.288V $

$ EMF=-1.288V $

$ (\therefore $ Oxidation will occur at hydrogen electrode and reduction at $ Br_2 $ electrode) Thus, emf is highest for $ Mg-Cu $ cell.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें