Redox Reactions And Electrochemistry Question 664

Question: Given the following molar conductivities at $ 250^{o}C;HCl,425,{{\Omega }^{-1}}cm^{2}mo{l^{-1}}; $ $ NaCl125{{\Omega }^{-1}} $ $ cm^{2}mo{l^{-1}} $ NaC (sodium crotonate), $ 82,{{\Omega }^{-1}}cm^{2}mo{l^{-1}}; $ what is the ionisation constant of crotonic acid- If the conductivity of a 0.001 M crotonic acid solution is $ 3.82\times {10^{-4}}{{\Omega }^{-1}}c{m^{-1}} $ -

Options:

A) $ 1.5\times {10^{-4}} $

B) $ 1.11\times {10^{-5}} $

C) $ 2.11\times {10^{-5}} $

D) $ 1.8\times {10^{-5}} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Idea This problem can be solved by using the concept of Kohlrausch law of independent migration by using which we can easily calculate the value of molar conductivity of crotonic acid after determining the $ {\wedge_{m(HC)}} $

calculate degree of dissociation $ (\alpha ),\alpha =\frac{{\wedge _{m(HC)}}}{\wedge _m^{\infty } (HC)} $ Molar conductivity of the dissociated crotonic acid.

$ {\wedge_{m(HC)}}={\wedge_{m(HCl)}}+{\wedge_{m(NaC)}}-{\wedge_{(m)NaCl}} $

$ =(425+82-125){{\Omega }^{-1}}cm^{2}mo{l^{-1}} $

$ =382,{{\Omega }^{-1}}cm^{2}mo{l^{-1}} $

Molar conductivity of HC $ {\wedge_{m(HC)}}=\frac{K}{C}=\frac{3.82\times {10^{-4}}}{0.001}\times 1000 $ $ =38.2{{\Omega }^{-1}}cm^{2},mo{l^{-1}} $ The degree of dissociation

$ \alpha =\frac{{\wedge_{m(HC)}}}{{\wedge_{{m^{\infty }}(HC)}}}=\frac{38.2,{{\Omega }^{-1}},cm^{2},mo{l^{-1}}}{382,{{\Omega }^{-1}}cm^{2},mo{l^{-1}}}=0.1 $

$ K_{a}=\frac{C{{\alpha }^{2}}}{1-\alpha }=\frac{{10^{-3}}{{(0.1)}^{2}}}{1-0.1}=1.11\times {10^{-5}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें