Redox Reactions And Electrochemistry Question 674

Question: A hydrogen electrode placed in a buffer solution of $ CH_3COONa $ and acetic acid in the ratio x : y and y : x has electrode potential value $ E_1 $ volts and $ E_2 $ volts, respectively at $ 25{}^\circ C $ . The $ pK_{a} $ value of acetic acid is ( $ E_1 $ and $ E_2 $ are oxidation potential):

Options:

A) $ \frac{E_1+E_2}{0.118} $

B) $ \frac{E_2-E_1}{0.118} $

C) $ -\frac{E_1+E_2}{0.118} $

D) $ \frac{E_1-E_2}{0.118} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ E_1=E^{O}-\frac{0.059}{1}\log {{[ {H^{+}} ]}_1} $ $ E_2=E^{O}-\frac{0.059}{1}\log {{[ {H^{+}} ]}_2} $ on adding (also $ E_H^{o}=0 $ )

$ E_1+E_2=-\frac{0.059}{1}[ \log {{[ {H^{+}} ]} _1}+\log {{[ {H^{+}} ]} _2} ] $

Now for $ CH_3COOHCH_3CO{O^{-}}+{H^{+}} $ $ [ {H^{+}} ]=\frac{K _{a}[ CH_3COOH ]}{[ CH_3CO{O^{-}} ]} $

$ \therefore $ $ {{[ {H^{+}} ]} _1}=K _{a}\frac{y}{x} $ $ ,{{[ {H^{+}} ]} _2}=K _{a}\frac{x}{y} $

$ \therefore $ $ E_1+E_2=-\frac{0.059}{1}[ \log \frac{K_{a}y}{x}+\log \frac{k_{a}x}{y} ] $ $ =-0.059[ 2\log K_{a} ] $

$ \log K_{a}=\frac{E_1+E_2}{2\times ( -0.059 )} $ $ \log K_{a}=-\frac{E_1+E_2}{0.118} $ or $ pK_{a}=\frac{E_1+E_2}{0.118} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें