Solid State Question 86

Question: Iron crystallizes in several-modifications. At about $ 910{}^\circ C $ ‘bcc’ form (called $ \alpha - $ form) undergoes transitions, to $ \gamma - $ form with ‘fcc’ lattice. Assuming that the distance between the nearest neighbors is the same in the two forms at the transition temperature, calculate the ratio of the density of $ \gamma - $ ron to that of $ \alpha - $ iron at the transition temperature.

Options:

A) 0.0887

B) 1.0887

C) 1.546

D) 1.544

Show Answer

Answer:

Correct Answer: B

Solution:

[b] In bcc structure, body diagonal $ =4r(Fe)=\sqrt{3}a $

$ \therefore $ $ a=\frac{4}{\sqrt{3}}r(Fe) $ $ Z=2 $ atoms per unit cell

$ \therefore $ $ d(\alpha -form)=\frac{Zm}{N_0a^{3}}=\frac{56\times 2}{(6.02\times 10^{23}){{( \frac{4}{\sqrt{3}} )}^{3}}} $ In fee structure, face diagonal $ =4r(Fe)=\sqrt{2}a^{1} $

$ \therefore $ $ a^{1}=2\sqrt{2}R(Fe) $ $ Z=4 $ atoms per unit cell

$ \therefore $ $ d(\gamma -form)=\frac{mZ}{N_0{{(a^{b})}^{3}}} $ $ =\frac{56\times 4}{(6.02\times 10^{23}){{(2\sqrt{2}r)}^{3}}} $

$ \Rightarrow $ Density ratio of $ \gamma - $ form to $ \alpha - $ form $ =\frac{2\times {{( \frac{4}{\sqrt{3}}r )}^{3}}}{{{(2\sqrt{2}r)}^{3}}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें