Solutions Question 184

Question: A solution of urea (mol. mass $ 56gmo{l^{-1}} $ ) boils at $ 100.18{}^\circ C $ at the atmospheric pressure. If $ K_{f} $ and $ K_{b} $ for water are 1.86 and $ 0.512Kkgmo{l^{-1}} $ respectively, the above solution will freeze at

Options:

A) $ 0.654{}^\circ C $

B) $ -0.654{}^\circ C $

C) $ 6.54{}^\circ C $

D) $ -6.54{}^\circ C $

Show Answer

Answer:

Correct Answer: B

Solution:

As $ \Delta T_{f}=K_{f}m $

$ \Delta T_{b}=K_{b}.m $ Hence, we have $ m=\frac{\Delta T_{f}}{K_{f}}=\frac{\Delta T_{b}}{K_{b}} $ or $ \Delta T_{f}=\Delta T_{b}\frac{K_{f}}{K_{b}} $

$ [ \Delta T_{b}=100.18-100=0.18{}^\circ C ] $

$ =0.18\times \frac{1.86}{0.512}=0.654{}^\circ C $ As the freezing point of pure water is $ 0{}^\circ C, $

$ \Delta T_{f}=0-T_{f} $

$ 0.654=0-T_{f} $
$ \therefore T_{f}=-0.654 $ Thus the freezing point of solution will be $ -0.654{}^\circ C. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें