Applications Of Derivatives Question 104

Question: The area of the triangle formed by the coordinate axes and a tangent to the curve $ xy=a^{2} $ at the point $ (x_1,y_1) $ on it is

[DCE 2001]

Options:

A) $ \frac{a^{2}x_1}{y_1} $

B) $ \frac{a^{2}y_1}{x_1} $

C) $ 2a^{2} $

D) $ 4a^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

Since $ y=\frac{a^{2}}{x},,\therefore \frac{dy}{dx}=-\frac{a^{2}}{x^{2}} $

$ \therefore $ At $ (x_1,,y_1), $

$ \frac{dy}{dx}=\frac{-a^{2}}{x_1^{2}} $ Thus tangent to the curve will be $ y-y_1=\frac{-a^{2}}{x_1^{2}}(x-x_1) $

therefore $ yx_1^{2}-y_1x_1^{2}=-a^{2}x+a^{2}x_1 $

therefore $ y’\frac{1}{\sqrt{1-{{( \frac{2x}{1+x^{2}} )}^{2}}}}.\frac{2(1+x^{2})-4x^{2}}{{{(1+x^{2})}^{2}}} $ , $ (\because x_1y_1=a^{2}) $ This meets the x-axis where $ y=0 $

$ \therefore a^{2}x=2a^{2}x_1, $

$ \therefore x=2x_1 $

$ \therefore $ Point on the x-axis is $ (2x_1,0) $ Again tangent meets the y-axis where $ x=0 $

$ \because x_1^{2}y=2a^{2}x_1,,\ \ \ \therefore y=\frac{2a^{2}}{x_1} $ So point on the y-axis is $ ( 0,\frac{2a^{2}}{x_1} ) $ Required area $ =\frac{1}{2}(2x_1)( {{\frac{2a}{x_1}}^{2}} )=2a^{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें