Applications Of Derivatives Question 108

Question: The maximum value of $ 2x^{3}-24x+107 $ in the interval [-3, 3] is

Options:

A) 75

B) 89

C) 125

D) 139

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ f(x)=2x^{3}-24x+107 $

At $ x=-3,\ f(-3)=2{{(-3)}^{3}}-24(-3)+107=125 $

At $ x=3,\ \ f(3)=2{{(3)}^{3}}-24(3)+107=89 $

For maxima or minima, $ {f}’,(x)=6x^{2}-24=0 $

$ \Rightarrow x=2,\ \ -2 $ So at $ x=2,\ f(2)=2{{(2)}^{3}}-24(2)+107=75 $ at $ x=-2,\ \ f(-2)=2{{(-2)}^{3}}-24(-2)+107=139 $

Thus the maximum value of the given function in [- 3, 3] is 139.