Applications Of Derivatives Question 112

Question: The function $ \sin x(1+\cos x) $ at $ x=\frac{\pi }{3} $ , is

Options:

A) Maximum

B) Minimum

C) Neither maximum nor minimum

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ f(x)=\sin x(1+\cos x) $

therefore $ {f}’(x)=\cos 2x+\cos x $ and $ {f}’’(x)=-2\sin 2x-\sin x=-(2\sin 2x+\sin x) $

For maximum or minimum value of $ f(x) $ , $ f’(x)=0 $

$ \cos 2x+\cos x=0 $

therefore $ \cos x=-\cos 2x $

therefore $ \cos x=\cos (\pi \pm 2x) $

$ \therefore x=\pi \pm 2x $ or $ x=\frac{\pi }{3},-\pi $

Now $ {f}’’,( \frac{\pi }{3} )=-2\sin \frac{2\pi }{3}-\sin \frac{\pi }{3}=-2\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}=-\frac{3\sqrt{3}}{2}=-ve $

Hence $ f(x) $ is maximum at $ x=\frac{\pi }{3} $ .