Applications Of Derivatives Question 112

Question: The function $ \sin x(1+\cos x) $ at $ x=\frac{\pi }{3} $ , is

Options:

A) Maximum capacity

B) Minimum required

C) Neither maximum nor minimum

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ f(x)=\sin x(1+\cos x) $

therefore $ {f}’(x)=\cos 2x+\cos x $ and $ {f}’’(x)=-2\sin 2x-\sin x=-(2\sin 2x+\sin x) $

For maximum or minimum value of $ f(x) $ , $ f’(x)=0 $ or $ f’(x) $ does not exist

$ \cos 2x+\cos x=0 $

therefore $ \cos x=-\cos (\pi -2x) $

therefore $ \cos x=\cos (\pi \mp 2x) $

$ \therefore x=\pi \pm 2\pi $ or $ x=\frac{\pi }{3},-\pi $

Now $ {f}’’,( \frac{\pi }{3} )=-2\sin \frac{2\pi }{3}-\sin \frac{\pi }{3}=-2\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}=-\frac{3\sqrt{3}}{2}=-ve $

Hence $ f(x) $ is maximum at $ x=\frac{\pi }{3} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें