Applications Of Derivatives Question 114

Question: The function $ f(x)=\log (1+x)-\frac{2x}{2+x} $ is increasing on

[EAMCET 2002]

Options:

A) (0, $ \infty $ )

B) ( $ -\infty $ , 0)

C) $ (-\infty ,\infty ) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ f(x)=\log (1+x)-\frac{2x}{2+x} $

$ \Rightarrow f’(x)=\frac{1}{1+x}-\frac{(2+x).(2-2x)}{{{(2+x)}^{2}}} $

therefore $ f’(x)=\frac{x^{2}}{(x+1){{(x+2)}^{2}}} $ Obviously, $ f’(x)>0 $ for all $ x>0 $

Hence $ f(x) $ is increasing on $ (0,\infty ) $ .