Applications Of Derivatives Question 122

Question: Co-ordinates of a point on the curve $ y=x\log x $ at which the normal is parallel to the line $ 2x-2y=3 $ are

[RPET 2000]

Options:

A) (0,0)

B) $ (e,e) $

C) $ (e^{2},,2e^{2}) $

D) $ ({e^{-2}}-2{e^{-2}}) $

Show Answer

Answer:

Correct Answer: D

Solution:

$ y=x\log x $

therefore $ \frac{dy}{dx}=1+\log x $

The slope of the normal = $ -\frac{1}{(dy/dx)}=\frac{-1}{1+\log x} $

The slope of the line $ 2x-2y=3 $ is 1. \ $ \frac{-1}{1+\log x}=1 $

therefore $ \log x=-2 $

therefore $ x={e^{-2}} $ \ $ y=-2{e^{-2}} $ \ Co-ordinate of the point is $ ({e^{-2}},,-2{e^{-2}}) $ .