Applications Of Derivatives Question 127

Question: The function $ f(x)={{\sin }^{4}}x+{{\cos }^{4}}x $ increases, if

[IIT 1999; Pb. CET 2001]

Options:

A) $ 0<x<\frac{\pi }{8} $

B) $ \frac{\pi }{4}<x<\frac{3\pi }{8} $

C) $ \frac{3\pi }{8}<x<\frac{5\pi }{8} $

D) $ \frac{5\pi }{8}<x<\frac{3\pi }{4} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(x)={{\sin }^{4}}x+{{\cos }^{4}}x $

$ ={{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{2}}-2{{\sin }^{2}}x{{\cos }^{2}}x $

$ =1-\frac{4{{\sin }^{2}}x{{\cos }^{2}}x}{2}=1-\frac{{{\sin }^{2}}2x}{2} $

$ =1-\frac{1}{4}(2{{\sin }^{2}}2x) $

$ =1-( \frac{1-\cos 4x}{4} )=\frac{3}{4}+\frac{1}{4}\cos 4x $

Hence function $ f(x) $ is increasing when $ f’(x)>0 $

$ f’(x)=-\sin 4x>0\Rightarrow \sin 4x<0 $

Hence $ \pi <4x<\frac{3\pi }{2} $ or $ \frac{\pi }{4}<x<\frac{3\pi }{8} $ .