Applications Of Derivatives Question 132

Question: The angle of intersection of the curves $ y=x^{2} $ and $ x=y^{2} $ at (1, 1) is

[Roorkee 2000; Karnataka CET 2001]

Options:

A) $ {{\tan }^{-1}}( \frac{4}{3} ) $

B) $ {{\tan }^{-1}}(1) $

C) $ 90^{o} $

D) $ {{\tan }^{-1}}( \frac{3}{4} ) $

Show Answer

Answer:

Correct Answer: D

Solution:

$ y=x^{2} $

therefore $ \frac{dy}{dx}=m_1=2x $

therefore $ {{( \frac{dy}{dx} )} _{(1,,1)}}=2=m_1 $ and $ x=y^{2} $

therefore $ 1=2y,\frac{dy}{dx} $

therefore $ \frac{dy}{dx}=m_2=\frac{1}{2y} $

therefore $ {{( \frac{dy}{dx} )} _{(1,,1)}}=\frac{1}{2} $

$ \therefore $ Angle of intersection, $ \tan \theta =\frac{m_1-m_2}{1+m_1m_2} $ = $ \frac{2-\frac{1}{2}}{1+2\times \frac{1}{2}} $ = $ \frac{3}{4} $

therefore $ \theta ={{\tan }^{-1}}(3/4) $ .