Applications Of Derivatives Question 133

Question: The minimum value of the expression $ 7-20x+11x^{2} $ is

Options:

A) $ \frac{177}{11} $

B) $ -\frac{177}{11} $

C) $ -\frac{23}{11} $

D) $ \frac{23}{11} $

Show Answer

Answer:

Correct Answer: C

Solution:

Given $ f(x)=7-20x+11x^{2} $

$ f’(x)=-20+22x $ Put $ f’(x)=0 $ i.e., $ -20+22x=0 $

therefore $ x=10/11 $ and $ f’’(x)=22>0 $

Hence at $ x=10/11,\ \ \ f(x) $ will have minimum value,

$ \therefore f,( \frac{10}{11} )=7-\frac{200}{11}+\frac{100\times 11}{121} $

$ =7-\frac{200}{11}+\frac{100}{11} $

$ =-\frac{23}{11} $ .