Applications Of Derivatives Question 136

Question: If the curve $ y=a^{x} $ and $ y=b^{x} $ intersect at angle $ \alpha $ then, $ \tan \alpha = $

[MP PET 2001]

Options:

A) $ \frac{a-b}{1+ab} $

B) $ \frac{\log a-\log b}{1+\log a\log b} $

C) $ \frac{a+b}{1-ab} $

D) $ \frac{\log a+\log b}{1-\log a\log b} $

Show Answer

Answer:

Correct Answer: B

Solution:

Clearly the point of intersection of curves is (0, 1).

Now, slope of tangent of first curve $ m_1=\frac{dy}{dx}=a^{x}\log a $

therefore $ {{( \frac{dy}{dx} )} _{(0,,1)}}=m_1=\log a $

Slope of tangent of second curve $ m_2=\frac{dy}{dx}=b^{x}\log b $

therefore $ m_2={{( \frac{dy}{dx} )} _{(0,,1)}}=\log b $ \ $ \tan \alpha =\frac{m_1-m_2}{1+m_1m_2}=\frac{\log a-\log b}{1+\log a\log b} $ .