Applications Of Derivatives Question 136

Question: If the curve $ y=a^{x} $ and $ y=b^{x} $ intersect at angle $ \alpha $ then, $ \tan \alpha = $

[MP PET 2001]

Options:

A) $ \frac{a-b}{1+ab} $

B) $ \frac{\log a-\log b}{1+\log a\log b} $

C) $ \frac{a+b}{1-ab} $

D) $ \frac{\log a+\log b}{1-\log a\log b} $

Show Answer

Answer:

Correct Answer: B

Solution:

Clearly the point of intersection of curves is (0, 1).

Now, slope of tangent of first curve $ m_1=\frac{dy}{dx}=a^{x}\log a $

therefore $ {{( \frac{dy}{dx} )} _{(0,,1)}}=m_1=\log a $

Slope of tangent of second curve $ m_2=\frac{dy}{dx}=b^{x}\log b $

therefore $ m_2={{( \frac{dy}{dx} )} _{(0,,1)}}=\log b $ \ $ \tan \alpha =\frac{m_1-m_2}{1+m_1m_2}=\frac{\log a-\log b}{1+\log a\log b} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें