Applications Of Derivatives Question 137

Question: The equation of tangent at $ (-4,,-4) $ on the curve $ x^{2}=-4y $ is

[Karnataka CET 2001: Pb. CET 2000]

Options:

A) $ 2x+y+4=0 $

B) $ 2x-y-12=0 $

C) $ 2x+y-4=0 $

D) $ 2x-y+4=0 $

Show Answer

Answer:

Correct Answer: D

Solution:

$ x^{2}=-4y $

therefore $ 2x=-4\frac{dy}{dx} $

therefore $ \frac{dy}{dx}=\frac{-x}{2} $

therefore $ {{( \frac{dy}{dx} )} _{(-4,,-4)}}=2 $ .

We know that equation of tangent is, $ (y-y_1),=,{{( \frac{dy}{dx} )} _{(x_1,,y_1)}}(x-x_1) $

therefore $ y+4=2(x+4) $

therefore $ 2x-y+4=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें