Applications Of Derivatives Question 137

Question: The equation of tangent at $ (-4,,-4) $ on the curve $ x^{2}=-4y $ is

[Karnataka CET 2001: Pb. CET 2000]

Options:

A) $ 2x+y+4=0 $

B) $ 2x-y-12=0 $

C) $ 2x+y-4=0 $

D) $ 2x-y+4=0 $

Show Answer

Answer:

Correct Answer: D

Solution:

$ x^{2}=-4y $

therefore $ 2x=-4\frac{dy}{dx} $

therefore $ \frac{dy}{dx}=\frac{-x}{2} $

therefore $ {{( \frac{dy}{dx} )} _{(-4,,-4)}}=2 $ .

We know that equation of tangent is, $ (y-y_1),=,{{( \frac{dy}{dx} )} _{(x_1,,y_1)}}(x-x_1) $

therefore $ y+4=2(x+4) $

therefore $ 2x-y+4=0 $ .