Applications Of Derivatives Question 139

Question: At what point on the curve $ x^{3}-8a^{2}y=0 $ , the slope of the normal is $ \frac{-2}{3} $

[RPET 2002]

Options:

A) $ (a,,a) $

B) $ (2a,,-a) $

C) $ (2a,,a) $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ x^{3}-8a^{2}y=0 $

therefore $ 3x^{2}-8a^{2},.,\frac{dy}{dx}=0 $

therefore $ 3x^{2}=8a^{2},.,\frac{dy}{dx} $

therefore $ \frac{dy}{dx}=\frac{3x^{2}}{8a^{2}} $

Slope of the normal = $ -\frac{1}{( \frac{dy}{dx} )} $ = $ -\frac{1}{\frac{3x^{2}}{8a^{2}}} $

$ =-\frac{8a^{2}}{3x^{2}} $

Given $ \frac{-8a^{2}}{3x^{2}}=\frac{-2}{3} $ \ $ (x,,y)=(2a,,a) $ .