Applications Of Derivatives Question 145

Question: If the law of motion in a straight line is $ s=\frac{1}{2}v,t, $ then acceleration is

[MP PET 1991]

Options:

A) Constant

B) Proportional to t

C) Proportional to v

D) Proportional to s

Show Answer

Answer:

Correct Answer: A

Solution:

$ s=\frac{1}{2}vt $

therefore $ 2s=vt $

therefore $ 2\frac{ds}{dt}=v+t.\frac{dv}{dt} $

therefore $ 2\frac{d^{2}s}{dt^{2}}=\frac{dv}{dt}+t.\frac{d^{2}v}{dt^{2}}+\frac{dv}{dt} $ But $ \frac{dv}{dt} $ = acceleration

therefore $ 2a=a+t.\frac{da}{dt}+a $

therefore $ \frac{da}{dt}=0 $ or $ xy=4\times 4=16 $

But for whole notation $ t=0 $ is impossible so that $ \frac{da}{dt}=0 $ i.e., a is constant.