Applications Of Derivatives Question 146

Question: If the function $ f(x)=ax^{3}+bx^{2}+11x-6 $ satisfies condition of Rolle’s theorem in [1, 3] for $ x=2+\frac{1}{\sqrt{3}} $ , then values of a and b , respectively, are

Options:

A) $ -,3,2 $

B) $ 2,-4 $

C) 1, 6

D) none of these

Show Answer

Answer:

Correct Answer: D

Solution:

[d] $ f(x)=ax^{2}+bx^{2}+11x-6 $ Satisfies condition of Roll’s theorem in [1, 3].

Therefore, $ f(1)=f(3) $ or $ a+b+11-6=27a+9b+33-6 $ or $ 13a+4b=-11 $ …(1)

And $ f’(x)=3ax^{2}+2bx+11 $ or $ f’( 2+\frac{1}{\sqrt{3}} )=3a{{( 2+\frac{1}{\sqrt{3}} )}^{2}}+2b( 2+\frac{1}{\sqrt{3}} )+11=0 $ or $ 3a( 4+\frac{1}{3}+\frac{1}{\sqrt{3}} )+2b( 2+\frac{1}{\sqrt{3}} )+11=0 $ …(2)

From equations (1) and (2), We get

$ a=1,b=-,6. $