Applications Of Derivatives Question 15

Question: The largest area of a trapezium inscribed in a semi-circle of radius R, if the lower base is on the diameter, is

Options:

A) $ \frac{3\sqrt{3}}{4}R^{2} $

B) $ \frac{\sqrt{3}}{2}R^{2} $

C) $ \frac{3\sqrt{3}}{8}R^{2} $

D) $ R^{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ AD=AB\cos \theta =2R\cos \theta ,AE=AD\cos \theta $

$ =2R{{\cos }^{2}}\theta $ or $ EF=AB-2AE=2R-4R{{\cos }^{2}}\theta $

$ DE=AD\sin \theta =2R\sin \theta \cos \theta $ Thus, area of trapezium, $ S=\frac{1}{2}(AB+CD)\times DE $

$ =\frac{1}{2}(2R+2R-4R{{\cos }^{2}}\theta )\times 2R\sin \theta \cos \theta $

$ =4R^{2}{{\sin }^{3}}\theta \cos \theta $

$ \frac{dS}{d\theta }=12R^{2}{{\sin }^{2}}\theta {{\cos }^{2}}\theta -4R^{2}{{\sin }^{4}}\theta $

$ =4R^{2}{{\sin }^{2}}\theta (3cos^{2}\theta -sin^{2}\theta ) $ For maximum area, $ \frac{dS}{d\theta }=0 $ or $ {{\tan }^{2}}\theta =3 $ or $ \tan \theta =\sqrt{3} $ ( $ \theta $ is acute) or $ {S_{\max }}=\frac{3\sqrt{3}}{4}R^{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें