Applications Of Derivatives Question 154

Question: The interval in which the function $ x^{3} $ increases less rapidly than $ 6x^{2}+15x+5 $ , is

Options:

A) $ (-\infty ,,-1) $

B) (-5 , 1)

C) (-1 ,5)

D) (5 , $ \infty $ )

Show Answer

Answer:

Correct Answer: C

Solution:

The function $ f(x)=x^{3} $ increases for all x and the function $ g(x)=6x^{2}+15x+5 $ increases, if $ g’(x)>0\Rightarrow 12x+15>0\Rightarrow x>-\frac{5}{4} $ .

Thus $ f(x) $ and $ g(x) $ both increases for $ x>-\frac{5}{4} $ .

It is given that $ f(x) $ increases less rapidly than $ g(x) $ ,

Therefore the function $ \varphi (x)=f(x)-g(x) $ is decreasing function , which implies that $ \varphi ‘(x)<0 $

therefore $ 3x^{2}-12x-15<0\Rightarrow -1<x<5 $ .