Applications Of Derivatives Question 154

Question: The interval in which the function $ x^{3} $ increases less rapidly than $ 6x^{2}+15x+5 $ , is

Options:

A) $ (-\infty ,,-1) $

B) (-5 , 1)

C) (-1 ,5)

D) (5 , $ \infty $ )

Show Answer

Answer:

Correct Answer: C

Solution:

The function $ f(x)=x^{3} $ increases for all x and the function $ g(x)=6x^{2}+15x+5 $ increases, if $ g’(x)>0\Rightarrow 12x+15>0\Rightarrow x>-\frac{5}{4} $ .

Thus $ f(x) $ and $ g(x) $ both increases for $ x>-\frac{5}{4} $ .

It is given that $ f(x) $ increases less rapidly than $ g(x) $ ,

Therefore the function $ \varphi (x)=f(x)-g(x) $ is decreasing function , which implies that $ \varphi ‘(x)<0 $

therefore $ 3x^{2}-12x-15<0\Rightarrow -1<x<5 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें