Applications Of Derivatives Question 156

Question: . If ST and SN are the lengths of the subtangent and the subnormal at the point $ \theta =\frac{\pi }{2} $ on the curve $ x=a(\theta +\sin \theta ),y=a(1-\cos \theta ),a\ne 1 $ , then

[Karnataka CET 2005]

Options:

A) $ ST=SN $

B) $ ST=2,SN $

C) $ ST^{2}=a,SN^{3} $

D) $ ST^{3}=a,SN $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{dx}{d\theta }=a(1+\cos \theta ),,\frac{dy}{d\theta }=a,(\sin \theta ) $

$ {{. \frac{dy}{dx} |} _{\theta =\frac{\pi }{2}}}=\frac{\frac{dy}{d\theta }}{\frac{dx}{d\theta }}=\frac{a\sin \theta }{a(1+\cos \theta )}=1, $

$ {{. y |} _{\theta =\frac{\pi }{2}}}=a $

Length of sub-tangent ST = $ \frac{y}{dy/dx}=\frac{a}{1}=a. $ and length of sub-normal SN = $ y\frac{dy}{dx}=a,.,1=a $

Hence $ ST=SN $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें