Applications Of Derivatives Question 158

Question: Maximum value of $ x{{(1-x)}^{2}} $ when $ 0\le x\le 2 $ , is

[MP PET 1997]

Options:

A) $ \frac{2}{27} $

B) $ \frac{4}{27} $

C) 5

D) 0

Show Answer

Answer:

Correct Answer: B

Solution:

Given $ f(x)=x{{(1-x)}^{2}} $ , $ f(x)=x^{3}-2x^{2}+x $ Now $ f’(x)=3x^{2}-4x+1 $ Put $ f’(x)=0 $ i.e., $ 3x^{2}-4x+1=0 $

$ 3x^{2}-3x-x+1=0 $

therefore $ x=1,1/3 $

$ {f}’’(x)=6x-4 $

$ \therefore {f}’’,(1)=2= $ positive and $ f’’(1/3)=-2= $ -ve

Hence maximum value will be at $ x=\frac{1}{3} $

Maximum value $ f,( \frac{1}{3} )=\frac{4}{27} $ .