Applications Of Derivatives Question 159

Question: The equation of the tangent to the curve $ x=2{{\cos }^{3}}\theta $ and $ y=3{{\sin }^{3}}\theta $ at the point $ \theta =\pi /4 $ is

[J & K 2005]

Options:

A) $ 2x+3y=3\sqrt{2} $

B) $ 2x-3y=3\sqrt{2} $

C) $ 3x+2y=3\sqrt{2} $

D) $ 3x-2y=3\sqrt{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ {{. x, |} _{\theta =\frac{\pi }{4}}}=\frac{2}{2\sqrt{2}}=\frac{1}{\sqrt{2}}, $

$ {{. y, |} _{\theta =\frac{\pi }{4}}}=\frac{3}{2\sqrt{2}},{{. \frac{dy}{dx} |} _{\theta =\frac{\pi }{4}}}{{. \frac{9,{{\sin }^{2}}\theta \cos \theta }{-6,{{\cos }^{2}}\theta \sin \theta } |} _{\theta =\frac{\pi }{4}}}=\frac{-3}{2} $ .
$ \therefore $

Equation of tangent is $ ( y-\frac{3}{2\sqrt{2}} )=\frac{-3}{2},( x-\frac{1}{\sqrt{2}} ) $

therefore $ 3\sqrt{2}x+2\sqrt{2}y=6 $

therefore $ 3x+2y=3\sqrt{2} $ .