Applications Of Derivatives Question 16

Question: Let f and g be functions from the interval $ [0,\infty ) $ to the interval $ [0,\infty ) $ , f being an increasing and g being a decreasing function. If $ f{g(0)}=0 $ then

Options:

A) $ f{g(x)}\ge f{g(0)} $

B) $ g{f(x)}\le g{f(0)} $

C) $ f{g(2)}=7 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ f’(x)>0 $ if $ x\ge 0 $ and $ g’(x)<0 $ if $ x\ge 0 $ Let $ h(x)=f(g(x)) $ then $ h’(x)=f’(g(x)).g’(x)<0 $ if $ x\ge 0 $

$ \therefore h(x) $ is a decreasing function $ \therefore h(x)\le h(0) $ if $ x\ge 0 $

$ \therefore f(g(x))\le f(g(0))=0 $ But codomain of each function is $ [0,\infty ) $

$ \therefore f(g(x))=0 $ for all $ x\ge 0 $

$ \therefore f(g(x))=0 $ Also $ g(f(x))\le g(f(0)) $ [as above]



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें