Applications Of Derivatives Question 164
Question: The speed $ v $ of a particle moving along a straight line is given by $ a+bv^{2}=x^{2} $ (where x is its distance from the origin). The acceleration of the particle is
[MP PET 2002]
Options:
A) $ bx $
B) $ x/a $
C) $ x/b $
D) $ x/ab $
Show Answer
Answer:
Correct Answer: C
Solution:
$ a+bv^{2}=x^{2} $
therefore $ 0+b( 2v.,\frac{dv}{dt} )=2x,.,\frac{dx}{dt} $
therefore $ v.b\frac{dv}{dt}=x,.,\frac{dx}{dt} $
therefore $ \frac{dv}{dt}=\frac{x}{b} $ , $ ( \because \frac{dx}{dt}=v ) $ .