Applications Of Derivatives Question 164

Question: The speed $ v $ of a particle moving along a straight line is given by $ a+bv^{2}=x^{2} $ (where x is its distance from the origin). The acceleration of the particle is

[MP PET 2002]

Options:

A) $ bx $

B) $ x/a $

C) $ x/b $

D) $ x/ab $

Show Answer

Answer:

Correct Answer: C

Solution:

$ a+bv^{2}=x^{2} $

therefore $ 0+b( 2v.,\frac{dv}{dt} )=2x,.,\frac{dx}{dt} $

therefore $ v.b\frac{dv}{dt}=x,.,\frac{dx}{dt} $

therefore $ \frac{dv}{dt}=\frac{x}{b} $ , $ ( \because \frac{dx}{dt}=v ) $ .