Applications Of Derivatives Question 168

Question: Let f(x) be a twice differentiable function for all real values of x and satisfies f(1)=1, f(2)=4, f(3)=9. Then which of the following is definitely true-

Options:

A) $ f’’(x)=2\forall x\in (1,3) $

B) $ f’’(x)=f’(x)=5 $ for some $ x\in (2,3) $

C) $ f’’(x)=3,\forall ,x\in (2,3) $

D) $ f’’(x)=2 $ for some $ x\in (1,3) $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Let $ g(x)=f(x)-x^{2}. $ We have $ g(1)=0,g(2)=0,g(3)=0 $

$ [\therefore f(1)=1,f(2)=4,,f(3)=9] $ . From Rolle’s theorem on $ g(x),g’(x)=0 $ for at least $ x\in (1,2). $ Let $ g’(c_1)=0 $ where $ c_1\in (1,2) $ . Similarly, g(x) =0 for at least one $ x\in (2,3). $ Let $ g’(c_2)=0 $ Where $ c_2\in (2,3) $ . Therefore, $ g’(c_1)=g’(c_2)=0 $ By Rolle’s Theorem at least one $ x\in (c_1,c_2) $ such that $ g’’(x)=0 $ or $ f’’(x)=2 $ for some $ x\in (1,3) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें