Applications Of Derivatives Question 172

Question: The position of a point in time -t- is given by $ x=a+bt-ct^{2} $ , $ y=at+bt^{2} $ . Its acceleration at time -t- is

[MP PET 2003]

Options:

A) $ b-c $

B) $ b+c $

C) $ 2b-2c $

D) $ 2\sqrt{b^{2}+c^{2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

Acceleration in direction of x-axis = $ \frac{d^{2}x}{dt^{2}}=-2c $ and acceleration in direction of y-axis = $ \frac{d^{2}y}{dt^{2}}=2b $ Resultant acceleration is = $ \sqrt{{{(-2c)}^{2}}+{{(2b)}^{2}}}=2\sqrt{b^{2}+c^{2}} $