Applications Of Derivatives Question 174

Question: If the distance -s- metre traversed by a particle in t seconds is given by $ s=t^{3}-3t^{2} $ , then the velocity of the particle when the acceleration is zero, in metre/sec is

[Karnataka CET 2004]

Options:

A) 3

B) - 2

C) - 3

D) 2

Show Answer

Answer:

Correct Answer: C

Solution:

Given $ s=t^{3}-3t^{2} $ \ $ v=\frac{ds}{dt}=3t^{2}-6t $ , $ a=\frac{d^{2}s}{dt^{2}}=6t-6 $ Acceleration is zero, if $ 6t-6=0 $

therefore $ t=1 $ \ Required velocity of particle at $ t=1 $ is $ v=3{{(1)}^{2}}-6(1) $

$ \Rightarrow ,v=-3 $ .