Applications Of Derivatives Question 174
Question: If the distance -s- metre traversed by a particle in t seconds is given by $ s=t^{3}-3t^{2} $ , then the velocity of the particle when the acceleration is zero, in metre/sec is
[Karnataka CET 2004]
Options:
A) 3
B) - 2
C) - 3
D) 2
Show Answer
Answer:
Correct Answer: C
Solution:
Given $ s=t^{3}-3t^{2} $ \ $ v=\frac{ds}{dt}=3t^{2}-6t $ , $ a=\frac{d^{2}s}{dt^{2}}=6t-6 $ Acceleration is zero, if $ 6t-6=0 $
therefore $ t=1 $ \ Required velocity of particle at $ t=1 $ is $ v=3{{(1)}^{2}}-6(1) $
$ \Rightarrow ,v=-3 $ .