Applications Of Derivatives Question 176

Question: A point on the parabola $ y^{2}=18x $ at which the ordinate increases at twice the rate of the abscissa is

[AIEEE 2004]

Options:

A) $ ( \frac{9}{8},\frac{9}{2} ) $

B) (2, - 4)

C) $ ( \frac{-9}{8},\frac{9}{2} ) $

D) (2, 4)

Show Answer

Answer:

Correct Answer: A

Solution:

$ y^{2}=18x $ Differentiate both sides w.r.t. t $ 2y( \frac{dy}{dt} )=18( \frac{dx}{dt} ) $

therefore $ 2y( 2\frac{dx}{dt} )=18( \frac{dx}{dt} ) $ , $ ( \because \frac{dy}{dt}=2\frac{dx}{dt} ) $ \ $ 4y=18 $ or $ y=\frac{9}{2} $ and $ x=\frac{y^{2}}{18}=\frac{9}{8} $

Hence the required point is $ ( \frac{9}{8},\frac{9}{2} ) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें