Applications Of Derivatives Question 178

Question: A spherical iron ball 10 cm in radius is coated with a layer of ice of uniform thickness that melts at a rate of 50 cm3/min. When the thickness of ice is 5 cm, then the rate at which the thickness of ice decreases, is

[AIEEE 2005]

Options:

A) $ \frac{1}{54\pi } $ cm/min

B) $ \frac{5}{6\pi } $ cm/min

C) $ \frac{1}{36\pi } $ cm/min

D) $ \frac{1}{18\pi } $ cm/min

Show Answer

Answer:

Correct Answer: D

Solution:

$ V=\frac{4}{3}\pi ,{{(x+10)}^{3}} $ where x is thickness of ice.
$ \therefore $ $ \frac{dV}{dt}=4\pi {{(10+x)}^{2}}\frac{dx}{dt} $

$ =a^{x}{b^{2x-1}}{{(\log ab^{2})}^{2}} $ At $ x=5 $ , $ ( \frac{dx}{dt} )=\frac{1}{18\pi }cm/\min . $