Applications Of Derivatives Question 18

Question: The function $ y=2x^{3}-9x^{2}+12x-6 $ is monotonic decreasing, when

[MP PET 1994]

Options:

A) $ 1<x<2 $

B) $ x>2 $

C) $ x<1 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Here $ f(x)=y=2x^{3}-9x^{2}+12x-6 $

$ \Rightarrow $ $ f’(x)=6x^{2}-18x+12 $

Since $ f(x) $ is increasing or decreasing in $ (a,b) $ according as $ f’(x)>0 $ or $ <0 $ for every $ x\in (a,b) $ .

Hence $ f’(x)=6(x-2)(x-1) $ which is obviously decreasing if $ x\in (1,2),i.e.,,1<x<2 $ .