Applications Of Derivatives Question 180

Question: A spherical balloon is being inflated at the rate of 35 cc/min. The rate of increase of the surface area of the balloon when its diameter is 14 cm is

[Karnataka CET 2005]

Options:

A) 7 sq. cm/min

B) 10 sq. cm/min

C) 17.5 sq. cm/min

D) 28 sq. cm/min

Show Answer

Answer:

Correct Answer: B

Solution:

Volume = $ V=\frac{4}{3}\pi r^{3} $

therefore $ \frac{dV}{dt}=4\pi r^{2}.\frac{dr}{dt} $ , at $ r=7 $ cm 35 cc/min = $ 4\pi {{(7)}^{2}}\frac{dr}{dt}\Rightarrow \frac{dr}{dt}=\frac{5}{28\pi } $ Surface area, S = $ 4\pi r^{2} $

$ \frac{dS}{dt}=8\pi r\frac{dr}{dt}=\frac{8\pi .7.5}{28\pi }=10, $ cm2/min.