Applications Of Derivatives Question 183

Question: A population p(t) of 1000 bacteria introduced into nutrient medium grows according to the relation $ p(t)=1000+\frac{1000t}{100+t^{2}} $ . The maximum size of this bacterial population is

[Karnataka CET 2005]

Options:

A) 1100

B) 1250

C) 1050

D) 5250

Show Answer

Answer:

Correct Answer: C

Solution:

$ p(t)=1000+\frac{1000t}{100+t^{2}} $

$ \frac{dp}{dt}=\frac{(100+t^{2}),1000-1000t,.,2t}{{{(100+t^{2})}^{2}}} $

$ =\frac{1000,(100-t^{2})}{{{(100+t^{2})}^{2}}} $

For extremum, $ \frac{dp}{dt}=0\Rightarrow t=10 $

Now $ {{. \frac{dp}{dt} |} _{t,<,10}}>0 $ and $ {{. \frac{dp}{dt} |} _{t,>,10}}<0 $

At $ t=10 $ , $ \frac{dp}{dt} $ change from positive to negative.

p is maximum at $ t=10 $ .

$ {p _{\max }}=p(10)=1000+\frac{1000.10}{100+10^{2}}=1050 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें