Applications Of Derivatives Question 183

Question: A population p(t) of 1000 bacteria introduced into nutrient medium grows according to the relation $ p(t)=1000+\frac{1000t}{100+t^{2}} $ . The maximum size of this bacterial population is

[Karnataka CET 2005]

Options:

A) 1100

B) 1250

C) 1050

D) 5250

Show Answer

Answer:

Correct Answer: C

Solution:

$ p(t)=1000+\frac{1000t}{100+t^{2}} $

$ \frac{dp}{dt}=\frac{(100+t^{2}),1000-1000t,.,2t}{{{(100+t^{2})}^{2}}} $

$ =\frac{1000,(100-t^{2})}{{{(100+t^{2})}^{2}}} $

For extremum, $ \frac{dp}{dt}=0\Rightarrow t=10 $

Now $ {{. \frac{dp}{dt} |} _{t,<,10}}>0 $ and $ {{. \frac{dp}{dt} |} _{t,>,10}}<0 $

At $ t=10 $ , $ \frac{dp}{dt} $ change from positive to negative.

p is maximum at $ t=10 $ .

$ {p _{\max }}=p(10)=1000+\frac{1000.10}{100+10^{2}}=1050 $ .