Applications Of Derivatives Question 187

Question: $ \frac{d}{dx}{{\tan }^{-1}}[ \frac{\cos x-\sin x}{\cos x+\sin x} ]= $

[AISSE 1985, 87; DSSE 1982,84; MNR 1985; Karnataka CET 2002; RPET 2002, 03]

Options:

A) $ \frac{1}{2(1+x^{2})} $

B) $ \frac{1}{1+x^{2}} $

C) 1

D) - 1

Show Answer

Answer:

Correct Answer: D

Solution:

$ \frac{d}{dx}{{\tan }^{-1}}[ \frac{\cos x-\sin x}{\cos x+\sin x} ] $

$ =\frac{d}{dx}{{\tan }^{-1}}[ \tan ( \frac{\pi }{4}-x ) ]=-1 $ .