Applications Of Derivatives Question 190

Question: In which of the following function is rolle’s theorem applicable-

Options:

A) $ f(x)= \begin{matrix} x,, \\ 0,, \\ \end{matrix} .,\begin{matrix} ,0\le x<1 \\ x=1 \\ \end{matrix} $ on [0, 1]

B) $ f(x)= \begin{matrix} \frac{\sin x}{x},, \\ 1,, \\ \end{matrix} .\begin{matrix} -\pi \le x<0 \\ x=0 \\ \end{matrix} $ on [- $ \pi $ ,0]

C) $ f(x)=\frac{x^{2}-x-6}{x-1} $ on [-2, 3]

D) $ f(x)= \begin{matrix} \frac{x^{3}-2x^{2}-5x+6}{x-1},,ifx\ne 1, \\ -,6,if,x=1 \\ \end{matrix} . $ on [-2, 3]

Show Answer

Answer:

Correct Answer: D

Solution:

[d] (1) Discontinuous at $ x=1\Rightarrow $ not applicable. (2) $ F(x) $ is not continuous (jump discontinuity) at x=0. (3) Discontinuity (missing point) at $ x=1\Rightarrow $ not applicable. (4) Notice that $ x^{3}-2x^{2}-5x+6=(x-1)(x^{2}-x-6). $

Hence, $ f(x)=x^{2}-x-6 $ if $ x\ne 1 $ and $ f(1)=-6. $ Thus, $ f $ is continuous at x=1. So, $ f(x)=x^{2}-x-6 $ is continuous in the interval $ [ -,2,3 ] $ . Also, note that $ f(-2)=f(3)=0. $

Hence, Rolle-s Theorem implies $ f’(x)=2x-1. $ Setting $ f’(x)=0 $ , we obtain x=1/2 which lies between -2 and 3.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें