Applications Of Derivatives Question 191

Question: If $ f(x+y)=f(x).f(y) $ for all x and y and $ f(5)=2 $ , $ f’(0)=3 $ , then $ f’(5) $ will be

[IIT 1981; Karnataka CET 2000; UPSEAT 2002; MP PET 2002; AIEEE 2002]

Options:

A) 2

B) 4

C) 6

D) 8

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ x=5,,y=0\Rightarrow f(5+0)=f(5).f(0) $

therefore $ f(5)=f(5)f(0)\Rightarrow f(0)=1 $

Therefore, $ f’(5)=\underset{h\to 0}{\mathop{\lim }},\frac{f(5+h)-f(5)}{h} $

$ =\underset{h\to 0}{\mathop{\lim }},\frac{f(5)f(h)-f(5)}{h}=\underset{h\to 0}{\mathop{\lim 2}},[ \frac{f(h)-1}{h} ] $ , $ { \because f(5)=2 } $

$ =2\underset{h\to 0}{\mathop{\lim }},.[ \frac{f(h)-f(0)}{h} ]=2\times f’(0)=2\times 3=6 $ .