Applications Of Derivatives Question 193

Question: If $ xe^{xy}=y+{{\sin }^{2}}x $ , then at $ x=0,\frac{dy}{dx}= $

[IIT 1996]

Options:

A) -1

B) -2

C) 1

D) 2

Show Answer

Answer:

Correct Answer: C

Solution:

We are given that $ xe^{xy}=y+{{\sin }^{2}}x $
When $ x=0 $ , we get $ y=0 $

Differentiating both sides with respect to x, we get

$ e^{xy}+xe^{xy}[ x\frac{dy}{dx}+y ]=\frac{dy}{dx}+2\sin x\cos x $
Putting $ x=0,,y=0 $ , we get $ \frac{dy}{dx}=1 $ .