Applications Of Derivatives Question 193
Question: If $ xe^{xy}=y+{{\sin }^{2}}x $ , then at $ x=0,\frac{dy}{dx}= $
[IIT 1996]
Options:
A) -1
B) -2
C) 1
D) 2
Show Answer
Answer:
Correct Answer: C
Solution:
We are given that  $ xe^{xy}=y+{{\sin }^{2}}x $         
When  $ x=0 $ , we get  $ y=0 $
Differentiating both sides with respect to x, we get
$ e^{xy}+xe^{xy}[ x\frac{dy}{dx}+y ]=\frac{dy}{dx}+2\sin x\cos x $                 
Putting  $ x=0,,y=0 $ , we get  $ \frac{dy}{dx}=1 $ .
 BETA
  BETA 
             
             
           
           
           
          