Applications Of Derivatives Question 194

Question: The minimum value of the function $ y=2x^{3}-21x^{2}+36x-20 $ is

[MP PET 1999]

Options:

A) -128

B) -126

C) -120

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Given, $ f(x)=2x^{3}-21x^{2}+36x-20 $

$ f’(x)=6x^{2}-42x+36 $ Put $ f’(x)=0 $

therefore $ 6x^{2}-42x+36=0 $

therefore $ x^{2}-7x+6=0 $

therefore $ x^{2}-6x-x+6=0 $

therefore $ (x-1)(x-6)=0 $

therefore $ x=1,,6 $ Now, $ {f}’’,(x)=12x-42 $

$ {f}’’,(1)=-30=-ve $ and $ {f}’’,(6)=30=+ve $

Hence $ x=6 $ is the point of minima Minimum value = $ f(6)=2{{(6)}^{3}}-21{{(6)}^{2}}+36\times 6-20 $

$ f(6)=-128 $ .