Applications Of Derivatives Question 196

Question: If $ u(x,y)=y\log x+x,\log y, $ then $ u_{x}u_{y}-u_{x}\log x-u_{y}\log y+\log x\log y= $

[EAMCET 2003]

Options:

A) 0

B) -1

C) 1

D) 2

Show Answer

Answer:

Correct Answer: C

Solution:

$ u(x,y)=y\log x+x\log y $

$ u_{x}=\frac{y}{x}+\log y;\ u_{y}=\log x+\frac{x}{y} $
Now, $ u_{x}u_{y}-u_{x}\log x-u_{y}\log y+\log x\log y $

$ =( \frac{y}{x}+\log y )( \log x+\frac{x}{y} )-\frac{y}{x}\log x-\log x\log y-\log x\log y $

$ -\frac{x}{y}\log y+\log x\log y=1 $ .