Applications Of Derivatives Question 202

Question: $ \frac{d}{dx}[ {{\tan }^{-1}}\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}} ]= $

[Roorkee 1980; Karnataka CET 2005]

Options:

A) $ \frac{-x}{\sqrt{1-x^{4}}} $

B) $ \frac{x}{\sqrt{1-x^{4}}} $

C) $ \frac{-1}{2\sqrt{1-x^{4}}} $

D) $ \frac{1}{2\sqrt{1-x^{4}}} $

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ \frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}=A $

Putting $ x^{2}=\cos 2\theta , $ we get
$ A=\frac{\sqrt{1+\cos 2\theta }+\sqrt{1-\cos 2\theta }}{\sqrt{1+\cos 2\theta }-\sqrt{1-\cos 2\theta }}=\frac{\cos \theta +\sin \theta }{\cos \theta -\sin \theta } $

$ A=\frac{1+\tan \theta }{1-\tan \theta }=\tan ( \theta +\frac{\pi }{4} ) $

Now $ y={{\tan }^{-1}}\tan ( \theta +\frac{\pi }{4} )=\theta +\frac{\pi }{4}=\frac{\pi }{4}+\frac{1}{2}{{\cos }^{-1}}x^{2} $

$ \therefore \frac{dA}{dx}=\frac{1}{2}\frac{-1}{\sqrt{1-x^{4}}}2x=\frac{-x}{\sqrt{1-x^{4}}} $