Applications Of Derivatives Question 204

Question: If $ y={{\sec }^{-1}}\frac{2x}{1+x^{2}}+{{\sin }^{-1}}\frac{x-1}{x+1} $ ,then $ \frac{dy}{dx} $ is equal to

[Pb. CET 2000]

Options:

A) 1

B) $ \frac{x-1}{x+1} $

C) Does not exist

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ y={{\sec }^{-1}}\frac{2x}{1+x^{2}}+{{\sin }^{-1}}( \frac{x-1}{x+1} ) $

$ \because $ $ -1\le \frac{2x}{1+x^{2}}\le 1 $ ; So, $ {{\sec }^{-1}}( \frac{2x}{1+x^{2}} ) $ is defined only at $ x=-1 $ and 1. So, $ y $ is not differentiable.

$ \therefore $ $ \frac{dy}{dx} $ does not exist.