Applications Of Derivatives Question 210

Question: If $ y^{2}=p(x) $ is a polynomial of degree three, then $ 2\frac{d}{dx}{ y^{3}.\frac{d^{2}y}{dx^{2}} } $ =

[IIT 1988; RPET 2000]

Options:

A) $ {p}’’’(x)+p’(x) $

B) $ {p}’’(x).{p}’’’(x) $

C) $ p(x).{p}’’’(x) $

D) Constant

Show Answer

Answer:

Correct Answer: C

Solution:

$ 2y\frac{dy}{dx}=p’(x)\Rightarrow 2\frac{dy}{dx}=\frac{{p}’(x)}{y} $

$ \Rightarrow 2\frac{d^{2}y}{dx^{2}}=\frac{y{p}’’(x)-{p}’(x){y}’}{y^{2}} $

therefore $ 2y^{3}\frac{d^{2}y}{dx^{2}}=y^{2}{p}’’(x)-y\frac{dy}{dx}{p}’(x) $

$ =p(x),{p}’’(x)-\frac{1}{2}{{{{p}’(x)}}^{2}} $

therefore $ 2\frac{d}{dx}( y^{3}\frac{d^{2}y}{dx^{2}} )={p}’(x){p}’’(x)+p(x){p}’’’(x)-{p}’(x){p}’’(x) $

$ =p(x){p}’’’(x) $ .