Applications Of Derivatives Question 211

Question: Let $ f(x) $ and $ g(x) $ be two functions having finite non-zero 3rd order derivatives $ {f}’’’(x) $ and $ {g}’’’(x) $ for all, $ x\in R $ . If $ f(x)g(x)=1 $ for all $ x\in R $ , then $ \frac{{{f}’’’}}{{{f}’}}-\frac{{{g}’’’}}{{{g}’}} $ is equal to

Options:

A) $ 3( \frac{{{f}’’}}{g}-\frac{{{g}’’}}{f} ) $

B) $ 3( \frac{{{f}’’}}{f}-\frac{{{g}’’}}{g} ) $

C) $ 3( \frac{g’’}{g}-\frac{f’’}{g} ) $

D) $ 3( \frac{{{f}’’}}{f}-\frac{{{g}’’}}{f} ) $

Show Answer

Answer:

Correct Answer: B

Solution:

We have $ f(x)g(x)=1 $
Differentiating with respect to x, we get
$ {f}‘g+f{g}’=0 $ …………..(i)
Differentiating (i) w.r.t. x, we get $ {f}‘‘g+2{f}’{g}’+f{g}’’=0 $ …………..(ii)
Differentiating (ii) w.r.t. x, we get
$ {f}‘‘‘g+{g}’’’,f+3{f}’’{g}’+3{g}’’{f}’=0 $

therefore $ \frac{{{f}’’’}}{{{f}’}}({f}‘g)+\frac{{{g}’’’}}{{{g}’}}(f{g}’)+\frac{3{f}’’}{f}(f{g}’)+\frac{3{g}’’}{g}(g{f}’)=0 $

therefore $ ( \frac{{{f}’’’}}{{{f}’}}+\frac{3{g}’’}{g} ),({f}‘g)=-( \frac{{{g}’’’}}{{{g}’}}+\frac{3{f}’’}{f} ),(f{g}’) $

therefore $ -( \frac{{{f}’’’}}{{{f}’}}+\frac{3{g}’’}{g} ),(f{g}’)=-( \frac{{{g}’’’}}{{{g}’}}+\frac{3{f}’’}{g} )f{g}’ $ , [using (i)]

therefore $ \frac{{{f}’’’}}{{{f}’}}+\frac{3{g}’’}{g}=\frac{{{g}’’’}}{{{g}’}}+\frac{3{f}’’}{f}\Rightarrow \frac{{{f}’’’}}{{{f}’}}-\frac{{{g}’’’}}{{{g}’}}=3( \frac{{{f}’’}}{f}-\frac{{{g}’’}}{g} ) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें