Applications Of Derivatives Question 216

Question: The volume of a spherical balloon is increasing at the rate of 40 cubic centrimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 8 centimetre, is

[Roorkee 1983]

Options:

A) $ \frac{5}{2} $ sq cm/min

B) 5 sq cm/min

C) 10 sq cm/min

D) 20 sq cm/min

Show Answer

Answer:

Correct Answer: C

Solution:

Here $ f’(x)=2x\log x+x $ and $ S=4\pi r^{2} $

therefore $ \frac{dV}{dt}=4\pi r^{2}\frac{dr}{dt} $

therefore $ f’’(1)=3+2{\log_{e}}1 $

$ \therefore \frac{dS}{dt}=8\pi r\frac{dr}{dt}=8\pi \times 8\times \frac{5}{32\pi }=10 $ .